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An extension of NMR pulsed-field gradient experiments toward
the generation, acquisition, and analysis of multiple echoes is pre-
sented. In contrast to currently used measurements where a single or
double encoding of displacements by gradient pulses is followed by
an acquisition of the echo signal at the end of the sequence, sampling
and analyzing the intermediately occurring echoes allows a direct
distinction between coherent and dispersive contributions to fluid
motion without additional referencing measurements. It is shown
that a series of gradient pulse pairs, leading to a train of echoes, can
be employed to map the time-dependence of the velocity autocorre-
lation function between displacements within a single experiment
for a system undergoing flow or motion. C© 2001 Academic Press

Key Words: velocity autocorrelation function; flow; diffusion;
CPMG; PFG.
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INTRODUCTION

For many years, nuclear magnetic resonance pulsed-field
dient (PFG) techniques have been a powerful tool for the
vestigation of transport processes. The principle of encod
particle motion into a spin echo by applying a pair of short g
dient pulses, separated by a time1 (1, 2), has been employe
to directly produce the probability density of displacements
propagator (3, 4), exploiting the Fourier relationship betwee
gradient strength and displacements. The shape of the p
gator as a function of1 contains important information abou
exchange processes in multicomponent systems, or restri
sizes and connectivities for diffusion of fluids in porous med
The same is true for pressure-driven fluid transport through
terials of different geometries, a subject which has more rece
attracted much interest in the NMR community and which
brought new impetus to the development of PFG techniq
Not only has the evolution of the flow propagator as a funct
of 1 been investigated and linked to structural features of
surrounding matrix (e.g., packings of spheres (5, 6) and nat-
ural rocks (7, 8)), but also strategies have been developed
determine the degree of correlation of the flow field betwe
two separated time intervals (9, 10). The possibility to interro-
301090-7807/01 $35.00
Copyright C© 2001 by Academic Press
All rights of reproduction in any form reserved.
gra-
in-
ing
ra-

, or
n
opa-
t

ction
ia.
ma-
ntly
as
es.

ion
the

to
en

gate the propagator for a fluid in an opaque medium at diffe
times within a single experiment, and to use this information
obtain a picture of how the propagator evolves between th
times, is a feature unique to NMR. Callaghan and Manz (10)
have presented a two-dimensional realization of this conc
Their experiment allowed the correlation of two distributions
velocities, separated by a mixing time, with each other in a tw
dimensional representation and was dubbed Velocity EXcha
SpectroscopY, or VEXSY. Mitra (11) has discussed a simila
experiment but with arbitrary directions of the two independ
wave vectors as a tool to probe diffusion in locally anisotro
pores.

With these two-dimensional experiments, it is possible to
rectly compare the behavior of particles with a given displa
ment in the first interval with their motion during a second i
terval. For the quantification of correlations, however, it is n
necessary to obtain the full two-dimensional probability de
sity of displacements, rather can such numbers be derived
averaged moments of displacements which are accessibl
similar, but much less time-consuming one-dimensional NM
experiments where all PFGs are varied simultaneously. S
methods have, for instance, been applied to distinguish betw
coherent and fluctuating motions in Poiseuille flow (12), flow
through hollow-fiber membranes (13), and rotating granular
media (14).

For one-dimensional NMR experiments, the procedure of
quiring only the final signal after completion of the full puls
sequence possesses the disadvantage that the informatio
tained from this echo must be compared to a reference m
surement to allow an investigation of correlations. Moreov
the temporal evolution of the correlation function has to
probed by repeated experiments for different mixing times.
the knowledge of the author, the feasibility of actually acquiri
the intermediate echoes and of comparing them in a quan
tive manner has not yet been discussed. In this paper, exten
of existing, one-dimensional PFG pulse schemes are prese
along with the mathematical framework needed to compute
correlation functions of interest. The possibility of obtainin
8
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values of the correlation function at multiple times in a sin
shot by repeated refocussing of echoes is suggested. In
ogy to related abbreviations in the literature, this new clas
experiments is described by the acronym RODENT (Repe
Observation of Displacements Encoding N Time intervals).

RESULTS AND DISCUSSION

A. Determination of the Displacement Correlation
Coefficient from Double-Encoding Experiments

Following a PFG experiment with displacement encoding
to two gradient pulses of intensityg and durationδ being sep-
arated by an interval1, each spin experiences a phase s
proportional to its displacementR during1. Averaging over all
spins in the sample leads to the attenuated signal intensity

S̃(q,1) = S(q,1)

S(0,1)
=
∫

P̄(R,1)ei 2πq R(1) dR, [1]

whereq= 1
2π γ δg andγ is the gyromagnetic ratio. The ave

age propagator̄P(R,1) is available as the Fourier transform
the signal functioñS(q,1) and is given by

P̄(R,1) =
∫
ρ(r 1)P(r 1, 0; r 1+ R,1) dr 1 [2]

with the initial spin densityρ(r 1) and the conditional probability
P(r 1, 0; r 1 + R,1) of finding a displacementR during1 for
an initial positionr 1.

A double encoding by two identical gradient pairs, separa
by a mixing timeτm, can be described in a similar way by
product of a displacement density,̄P(R1), and a conditional
probability between displacements,P(R1; R2, τm),

S̃(q, τm) =
∫

P̄(R1)P(R1; R2, τm)ei 2πq(R1±R2) dR1 dR2

=
∫

P̄(R1± R2, τm)ei 2πq(R1±R2) d(R1± R2), [3]

where the encoding time1 has been omitted, and the± sign
represents the two casesq1=q2 and q1=−q2, respectively
(14). The propagator̄P(R1 + R2, τm) then describes the prob
ability density of the total displacements accumulated dur
both1 intervals, whileP̄(R1− R2, τm) measures the probabi
ity density of differences between displacements for the mix
time τm (15, 16). If the particle velocities in the two encodin
intervals remain constant, one would observeP̄(R1−R2, τm)=
P̄(R1) δ(R1− R2), and the effective dispersion defined by t
experiment withq1=−q2 would be zero. The change of di
placements, or velocities, as measured by this double-enco
pulse sequence has been shown to deliver important info
tion about the loss of coherence between particles starting

the same velocity. To quantify this time-dependent correlati
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a comparison of the single- and double-encoded propaga
P̄(R1) and P̄(R1 ± R2, τm), or the dispersion coefficients ob
tained from them is necessary (12, 14, 17).

The mathematical definition of the correlation coefficient
two quantitiesA, B is given by

ρA,B= 〈AB〉 − 〈A〉〈B〉√
〈A2〉 − 〈A〉2

√
〈B2〉 − 〈B〉2

. [4]

A, B can be any power of displacements. In particular, if d
placements in the same direction but at different times are c
pared to each other,ρA,B becomes the velocity autocorrelatio
function (VACF, (4, 5, 14)) in the limit of vanishing encoding
times1. This function is given by

Rv(τ )=〈v(t) v(t + τ )〉, [5]

wherev(t) represents an instantaneous velocity. Each VEX
experiment with a mixing timeτm delivers one value of the
VACF, Rv(τ = τm), provided that velocity changes during1 can
be neglected.

The moments of displacements for a stationary process ca
computed from the propagators obtained by the double-enco
sequences as

〈(R1± R2)n〉 =
∫

P̄(R1± R2)(R1± R2)n d(R1± R2), [6]

where

〈R1+ R2〉 = 2〈R1〉, 〈R1− R2〉 = 0,

and

〈(R1± R2)2〉 = 2
〈
R2

1

〉± 2〈R1R2〉,

because〈Rn
1〉= 〈Rn

2〉. The average displacement during two e
coding intervals1 is twice as large as the displacement duri
a single interval1, and the average change of displaceme
is zero as no net acceleration is allowed in stationary flow. T
second moments, however, contain the mixed term which is n
essary for quantifying the degree of correlation (see Eq. [4]

One possibility to retrieve the mixed term〈R1R2〉 is to per-
form either of the two double-encoding experiments and de
mine〈R2

1〉 independently employing a single-encoding seque
which has to be done only once and serves as a referenc
all values ofτm. Alternatively, one can perform two double
encoding experiments for identical mixing times but with t
two wave vector settingsq1=q2 andq1= −q2, respectively.
Computing the sum and the difference of the second mom
on,of displacements from these two probability density functions
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FIG. 1. PFG sequence for double encoding of displacements. All grad
pulses are stepped simultaneously as indicated by the arrows, where solid
representq1 = q2 and dashed linesq1 = −q2, respectively. Each 180◦ RF
pulse changes the sign of all preceding effective gradient wave vectors.

then allows one to isolate the desired quantities:

1

4
[〈(R1+ R2)2〉 + 〈(R1− R2)2〉] = 〈R2

1

〉
[7]

1

4
[〈(R1+ R2)2〉 − 〈(R1− R2)2〉] = 〈R1R2〉 . [8]

It is intuitively clear that for long times whenR1 and R2 be-
come independent,〈R1R2〉≈ 〈R1〉〈R2〉 and the correlation dis
appears. This is always the case for purely random motion
as unrestricted self-diffusion (17).

However, it is also possible to obtain the pure and the mi
second moments,〈R2

1〉 and〈R1R2〉, from a single experiment in
which the echo signals following the first and the second grad
pair, respectively, are both acquired. In Fig. 1, a simple repre
tation of such an experiment is shown. The FID following the 9◦

RF pulse is refocussed into a first echo in which displacem
during the first interval1 are encoded by the wave vectorq1.
This encoding is carried forward to an intermediate echo wh
is generated preceding the second encoding interval. (In a
experiment and for transverse relaxation timesT2 short com-
pared toτm, the 180◦ RF pulse in the center might be replac
by two 90◦ RF pulses in order to generate a stimulated e
(18)). The second interval1 produces an additional encodin
of displacements, depending on the choice of the wave ve
(q =−q is indicated by dashed lines). Fourier transformat
1 2
of the first and second marked echoes with respect toq then × Rk1

1 ±Rk2
2 · · · (±1)n+1Rkn

n . [9]

1

FIG. 2. Generation ofn echoes during a RODENT experiment. Each pair of gradient pulses is placed symmetrically around the 180◦ RF pulses of a CPMG

sequence. All gradient pulses are stepped simultaneously as indicated by t
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renders the propagators̄P(R1) and P̄(R1 ± R2), respectively.
Note that in order to generate a detectable first echo, the mix
time is restricted toτm>1.

B. Determination of the Full Displacement Autocorrelation
Function from Multiple-Encoding Experiments

The interrogation of a complete VACF with the describe
method would still involve a series of individual experimen
over a range ofτm values, whereP̄(R1) is identical for each
measurement so that essentially no gain in experimental tim
achieved. It is, however, entirely possible to repeat the encod
by a series of wave vectorsq so that a train of echoes is generate
each of which contains information about displacements ac
mulated during all preceding encoding intervals. Such multip
encoding has already been suggested (11, 14). A Carr–Purcell–
Meiboom–Gill (CPMG) type sequence of 180◦ RF pulses (19,
20) interspersed with evenly spaced gradient pulses has bee
alyzed both theoretically (21) and experimentally (22, 23) in the
context of frequency-dependent dispersion processes, but
only the final echo at the end of the sequence being analyz
The simultaneous acquisition of each of then echoes in such
a pulse sequence, allows the determination ofn propagators of
combined displacements. The RODENT scheme is shown
Fig. 2, where all gradient pulses are assumed to be stepped
identical amplitudes|q|. The resulting signal function for each
echoi is Fourier transformed with respect toq and the second
momentsm2,i are given by the sum of the mixed terms weighte
by the polynomial coefficients:

1st echo:m2,1 =
〈
R2

1

〉
,

2nd echo:m2,2 = 〈(R1± R2)2〉 = 2
〈
R2

1

〉± 2〈R1R2〉,
3rd echo:m2,3 = 〈(R1± R2+ R3)2〉

= 3
〈
R2

1

〉± 4〈R1R2〉 + 2〈R1R3〉,
nth echo:m2,n = 〈(R1± R2+ · · · (±1)n+1Rn)2〉

=
∑

k1+···+kn=2

2

k1!k2! . . . kn!〈 ( ) 〉
he arrows, where solid lines representq1 = qi and dashed linesq1 = −qi , respectively.
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Here, 〈Rl Rl+m〉 represent the mixed moments of displa
ments encoded into the echoesl andm, respectively. Due to th
stationarity condition, they are identical for anyl , and equal to
〈R1R1+m〉 in particular; they only depend on the timedifference
τm which is equal tom times the echo separation. (The option
a succession of gradient pairs with equal or sign-inverted w
vectors, i.e.,qi =qi+1 andqi = −qi+1, has been considered a
is indicated symbolically by the± sign.) This condition allows
the straightforward simplification of Eq. [9] to

m2,n= n
〈
R2

1

〉+ n−1∑
m= 1

(±1)m+12(n−m)〈R1R1+m〉. [10]

The relevant mixed moments of displacements for increa
echo separations can then be isolated from the echoes’ s
moments, 〈

R2
1

〉 = m2,1,

〈R1R2〉 = ±1

2
[m2,2− 2m2,1],

〈R1R3〉 = 1

2
[m2,3− 2m2,2+m2,1],

and

〈R1Rn〉 = (±1)n+1 1

2
[m2,n − 2m2,n−1+m2,n−2] [11]

for n ≥ 3.
Each of the mixed moments of displacements is obtained

three successive echoes only. For the computation of the c
lation coefficient, the first and second moments of the first e
also need to be known:

ρR1,Rn =
〈R1Rn〉 − 〈R1〉2〈

R2
1

〉− 〈R1〉2

= (±1)n+1 (m2,n − 2m2,n−1+m2,n−2)−m2
1,1

2
(
m2,1−m2

1,1

) . [12]

Equation [12] is exact for stationary flow conditions if bac
ground gradients remain negligible and if perfect 180◦-pulses are
assumed. In order to account for pulse imperfections, a sui
compensated CPMG-sequence such as those discussed24)
has to be used in order to preserve both orthogonal compo
of the magnetization. In such cases, it can become necess
gradient-encode and acquire not every echo but only one
per repetition cycle of the compensated sequence.

The choice of either identical or alternating signs of theq wave
vectors during the experiment has no effect on the weightin
the moments. The behavior of the echoes, on the other hand
be different if the contribution of coherent motion to the to
displacements is strong. Forq vectors of identical sign, eac

propagator samples a displacement averaged over all pre
CATIONS 311
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ing intervals. For alternatingq vectors, on the other hand, eve
echoes are only sensitive to the accumulated differences betw
displacements and thus decay slower than the odd echoes a
magnitude ofq is increased. This is the case for a time-invaria
gradient and the different behaviour of odd and even echoes
already pointed out by Carr and Purcell in their original pap
(19). In the RODENT pulse sequence of Fig. 2, alternatingq en-
coding vectors are generated if each pulsed gradient posse
the same sign. By using only the propagators of the even ech
one can thus follow the evolution of displacementdifferences,

〈(R2− R1)(R4− R3)〉= 1

2
[m2,4− 2m2,2],

and

〈(R2− R1)(Rn − Rn−1)〉= 1

2
[m2,n − 2m2,n−2+m2,n−4],

for n ≥ 6 andn even.
In the finite-time approximation, this corresponds to the c

relation function of accelerations, defined as the velocity cha
during the echo separation (15, 25).

C. Determination of the Full Displacement Autocorrelation
Function from the Low-q Behavior in
Multiple-Encoding Experiments

The second moment of displacements is closely linked
the dispersion coefficientD∗, which can be defined as a time
dependent quantity via 2D∗(1)1=〈(R−〈R〉)2〉 (only one spa-
tial direction shall be considered here, for simplicity). Previo
works have discussed the different responses of flowing syst
to single or double encoding sequences in terms of effective
persion coefficients and it was suggested that these values
be obtained from the low-q data of the signal intensities rathe
than from the full propagators themselves (5, 14, 17), using the
relation

D∗eff (1)= lim
q→0

−1

4π21
∂ ln(|S̃(q)|)/∂q2. [13]

For smallq, S̃(q) can be approximated as

|S̃(q)| =e−2π2q2〈(R−〈R〉)2〉, [14]

so that the normalized intensity of thenth echo can be written
with the abbreviations of Eq. [9]:

|S̃n(q)| =e−2π2q2(m2,n−n2m2
1,1). [15]

(Under experimental conditions, care has to be taken that
low-q condition must remain valid for echoes of higher order w
ich involve larger total displacements.) The mixed terms of d
ced-placements are now obtained from ratios of the echo intensities
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(see Eq. [11]):

〈R1R2〉 − 〈R1〉2 = ± lim
q→0

−1

4π2
∂ ln

( ∣∣∣∣∣ S̃2(q)

S̃2
1(q)

∣∣∣∣∣
)/

∂q2, [16]

〈R1Rn〉 − 〈R1〉2

= (±1)n+1 lim
q→0

−1

4π2
∂ ln

( ∣∣∣∣∣Sn(q)Sn−2(q)

S2
n−1(q)

∣∣∣∣∣
)/

∂q2, [17]

and the correlation coefficient from dividing this express
by 〈R2

1〉− 〈R1〉2= limq→0
−1
2π2 ∂ ln(|S̃1(q)|)/∂q2 (see Eq. [12]).

Note that the additional attenuation due to relaxation is cance
in the quotient of the echo intensities.

CONCLUSIONS

Multiple encoding of spin displacements by means of NM
pulsed-field gradient sequences and repeated signal acqui
within one sequence (RODENT) offers the possibility of co
siderably speeding up the determination of correlation functi
between displacements. The method can be employed for
processes but also for self-diffusion in restricted geometries,
vided that the decay time constants for correlations are within
experimentally accessible range which is primarily given by g
dient switching times and the relaxation time of the sample.
scheme can be generalized toward arbitrary directions of w
vectors for probing locally anisotropic dispersion behavior
fast determination of correlation functions of displacements p
vides a suitable tool for the estimation of structural sizes wh
are relevant for the dispersion process of fluids in porous me
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